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For the weakly coupled lattice %6 theory in a hierarchical model approximation 
a nonperturbative renormalization group analysis in the spirit of Gaw~dzki and 
Kupiainen is performed to study the flow of the effective actions. We deduce a 
domain of attraction to the tricritical (Gaussian) fixed point. The two relevant 
coupling constants of the problem are controlled by analytic continuation to 
complex domains, tracing their images under the renormalization group 
iterations. 
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1. I N T R O D U C T I O N  A N D  RESULTS 

The concepts of the renormalization group have become the major 
theoretical perspective in analyzing the long range behavior of systems with 
an infinite number of degrees of freedom. However, the instrumentation of 
these concepts for particular models constitutes a formidable task. In order 
to simplify the problem for scalar field theories Wilson introduced an 
approximate renormalization group recursion relation (1'2) which in a for- 
mal perturbation expansion still produces essentially the same set of graphs 
as the full problem. Using this framework Riedel and Wegner {3) have 
already treated a d =  3 scalar lattice theory with a potential formed by an 
even sixth order polynomial as a model for tricritical behavior. They found 
on a perturbative level the flow to a massless Gaussian fixed point. 

On the theoretical side a very enlightening approach to the renor- 
realization group has been developed by Gawgdzki and Kupiainen. (4) They 
decomposed the scalar massless lattice field into massive fluctuations on 
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successive block lattices which are nearly identically distributed in their 
respective scales. Guided by these properties these authors introduce a set 
of models replacing the lattice Laplacian by an approximate version of it 
which implies a hierarchical structure. It is the merit of such hierarchical 
models that a local action is strictly transformed by Wilson Kadanoff 
block spin transformations into again a local one. Denoting by g(n)(~b) the 
Gibbs factor connected with the effective potential at a lattice site and by 
L = 2, 4, 6,... the necessarily even block length, the renormalization group 
of these hierarchical models for a scalar field ~b e R in dimension d reads, 
n s [N o, 

g(.+ 1)(0 ) _ ~ dg(z)[g(')(L-l/:(d-2)~b + z) g(~)(L -1/2(a- 2)~b - z)] Ld/2 

- ~ o  dtt(z) g(")(z) c~ 
(1.1) 

with the Gaussian measure (on 0~) 

dl~( Z ) = - ~  e -(1/2)z2 dz (1.2) 

It is remarkable that writing g / ' ) (~b)=exp[ -L  dQ,(2-1/2~b)] trans- 
forms (1.1) in the case of L = 2  into Wilson's approximate recursion 
relation. Moreover Gaw~dzki and Kupiainen invented a powerful 
analyticity technique, (5) devised to control nonperturbatively the flow of 
the renormalization group (1.1), necessary in a rigorous treatment because 
of the unbounded scalar field. Employing this method they showed, among 
other results, the infrared asymptotic freedom of the weakly coupled d =  4 
lattice ~b 4 theory within the hierarchical model approximation (1.1). (5'6) 
Very recently these authors could extend their analysis beyond the 
hierarchical model approximation treating the full masstess ~b 4 theory. (7) 

The subject of our work is to investigate rigorously a weakly coupled 
~b 6 theory in d = 3  within the hierarchical renormalization group (1.1), 
starting with a family of Gibbs factors 

g(~ = e - (p0/2)~2 ()~0/6)~4--(~ (1.3) 

where Po, )~o are complex and ao real positive and sufficiently small. We 
perform in close analogy to Gaw~dzki and Kupiainen (5) analytic con- 
tinuations of the Gibbs factors g(')(~b) to complex values of the field ~b, but 
in addition control their holomorphic dependence on the initial coupling 
constants (P0, 20)e@o ~ C 2, where ~o is a suitably chosen compact set. 
Actually a slightly larger family of initial Gibbs factors sufficiently "close" 
to (1.3) is considered, stated in Section 2. Exploiting the fact that the Gibbs 
factors g(')(~b) are holomorphic functions of (Po, 20) we show existence and 
uniqueness of (real) critical values (po ,2o)=(p* ,2*)  for which con- 
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vergence to the infrared asymptotically free fixed point g =  1 occurs. 
Following the iteration, we will learn how to restrict (Po, 2o) successively to 
compact sets Nn c Nn - ~ C ""  ~ 90, shrinking exponentially in diameter, in 
order to have bounds on the expansive parameters (Pn, 2n) in g(n)(~b). The 
critical point is found as 

{(p*, 2*)} = (~ ~n (1.4) 
n - - O  

We formulate our main result in the following theorem. 

Theorem.  For initial Gibbs factors (1.3) with small ~ o > 0  there 
exist real critical values Po = P*(~o), 2o= 2"(~o) such that 

lim g(")(~b)= 1 
n T o v  

n > , / v  

uniformly on any compact domain in C, where JV depends on the domain. 

Uniqueness of p*(Oo), 2"(Oo) follows by our method requiring that the 
expansive parameters remain close to their perturbative values at each 
iterative step. 

Several comments should be added: 

(i) Besides the couplings already appearing in (1.3) a ~b 8 term the 
coupling of which becomes negative in the course of the iteration 
has to be traced explicitly. This is necessary because of internal 
consistency of our estimates; compare (5.20): only the effect of 
this coupling renders finally the ~b 6 coupling marginally stable. 
Nevertheless it is possible to begin with (1.3). 

(ii) We find it satisfactory, that our estimates allow all possible 
values of the block length L, i.e., L ~> 2, even. 

(iii) We emphasize that the simple argument, (s'5) based on con- 
tinuity, to derive the existence of a critical point in the case of 
one relevant coupling does not work for more than one. Our 
analytic technique can obviously be extended to a finite number 
of relevant couplings. 

The article is organized as follows. In Section 2 we state the inductive 
assumptions for the Gibbs factors. In Section 3 the inductive reproduction 
of their general analytic properties is shown. The assumptions on large 
fields are inductively reproduced in Section 4. Finally, in Section 5, forming 
the nucleus of the approach, we reproduce inductively the assumed small 
field properties; in Section 5.1 the holomorphic properties of the effective 
potential are derived and in Section 5.2 the behavior of the coupling con- 
stants is controlled. 
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2. I N D U C T I V E  A S S U M P T I O N S  

In order to avoid cumbersome notation we introduce for a general 
n~No 

g((b)= g(n)(O), g'(O)=- g("+ ~)(O) (2.1) 

for the Gibbs factors and 

B, = (n + no) ~ (2.2) 

with fixed no, c~ R+. As our succeeding estimates will show, no has to be 
chosen sufficiently large and c~ < 1/12. 

Let ~b=~b~ + i~b2~C with ~b 1, q~2 ~ ~, and the relevant coupling con- 
stants Po and 2o of the initial action, (1.3), chosen complex, (Po, 2o)~ 
@o =C2- @o is a compact simply connected domain restricted in each 
iteration step to compact domains ~n = int ~n 1 = @o, as will be shown in 
Section 5.2. 

The Gibbs factor g(~b) is assumed to have the following properties: 

(A1)  Genera l  Ana ly t i c  Propert ies .  g(~b) is a holomorphic 
function of (O, Po,)oo) in the domain {~b~C: Id~2l~<B,,}x~@,,cC s. 
Moreover, for fixed Po, 20 

g ( - ~ )  = g(~b); g(0) = 1 

(A2) Large Field. For I~bl>Bn and [~2[~/s B, with 
1 < ~c < x~-3,  such that KBn > Bn +z due to n o large enough, the function 
g(~b) is bounded uniformly in (Po, 2o) E @, by 

[ g(~b)l < e -(1/15) R~ a{ (1/2)q~-~b~(lSqt~ + ~b 4) + D~b~} 

with Re d e R+ specified in the following assumption and D a large fixed 
positive constant; see (4.21). The restriction on ~c stated above implies 
I~b11 ~> Bff,,f3 for all admitted values of L: L >i 2, even. 

(A3) Smal l  Field. For I~bj~B. there exists a function v(~b) 
holomorphic in (~b, Po, 20) such that 

g(~) = e-~(~) 

p 2 2~4 a 6 ~ ~8 ~(~)=ge +g +~e +~ +~(~) 

co ~21 ( d ~ 2 l  
~(4) = y~ ~ v(0) 

,=~ (2 l ) .  \~j  
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The complex coupling constants p, 2, a, ; depending on the complex initial 
values Po, 2o (and the real ao) are restricted such that 

[(n+no)Pl, [(n+no)ZI, I(n+no)aJ, and I(n+no)2VJ 

have upper bounds uniformly in Po, 20, independent of no+n, and 
(n + no) Re a > const > 0, and 128(3L) 3 tim #[ < Re & The precise relation 
between 6 and a will be stated later in (5.38). It implies that Re 6, which is 
positive and monotonously decreasing with n, satisfies R e d =  
Re a + O((n + no) -2). Furthermore ~(~b) is bounded by [f~(~b)] < a(n + no)-2 
uniformly in ~b, Po, 2o, with fixed a e R+. 

3. INDUCTIVE REPRODUCTION OF THE GENERAL 
ANALYTIC PROPERTIES 

We follow the notation of Ref. (5) and write (1.1) for d=  3 in the form 

d#(z) f(O, z) (3.1) 
g'(r = 5d#(z) f(O, z) 

with 

g ~ - ~ - z j j  (3.2) 

In order to reproduce inductively the assumptions (AI) for g'(~b) we 
first observe that in the strip ~b e C, IIm ~bl ~< B=+I we need, because of (3.1) 
and (3.2), the function g at 

Im ~ _ + z  = ~  ~ ~ B ,  (3.3) 

From the assumptions (A1)-(A3) we deduce that for ~beC with 
IIm~bj<~cB=, (po, 2 o ) e i n t ~ ,  and ze[E the function f (~,z)  is (i) 
simultaneously continuous in ~b, Po, 2o, z; (ii) holomorphic in (~b, Po, 2o) for 
fixed z; (iii) uniformly in ~b, Po, 2o, and z bounded by a constant. Hence, 
due to the finite absolutely continuous measure (1.2) the integral 

f d#(z) f(O, z) (3.4) 

defines holomorphic functions of the variables ~b, Po, and 2 o separately and 
hence a function holomorphic in (~b, Po, 2o)e {J~b2[ <~cBn} x i n t ~ n =  

822/'43/1-2-9 
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{l@a[ ~<Bn+l} )<~n+l'  It remains to be shown that at q~=0 this function 
has no zeros in (Po,/-o). 

We decompose 

I d~(z) f(0, z) = fM <8. @(~) g(~?~ + I~ I >~ 
@(z) g(z) L3 =: I~ + I2 (3.5) 

From (A2) we obtain, estimating generously 

1121 < f @(z) < ~ C -(1/4)B2n 
Izl > B~ 

(3.6) 

Due to (A3) we have 

I 1 =  f d, t t (z)  e -L3Rev(zl- iL3Imv(z)  
]zl < Bn 

(3.7) 

Using, valid for I~'1 < �89 

I : -  1 -~1  ~<1~1 ~ (3.8) 

we obtain, again because of (A3), with N=n +no 

I i = f  dg(z)e-L3Re~(~){l_iL3imv(z)}+O(N 2) 
Izl < Bn 

(3.9) 

implying an imaginary part of order N 1 and real part of order 1, hence 

f dl~(Z) e-L3 Re ~(z) + O(N 2) (3.10) Illl = zI <B. 

From (3.6) and (3.10) we thus obtain 

f dFt(z)f(O, z) >fzl<8~ d#(z)e /:Re~(z)iO(N-2)l 

>I d#(z) e L3P~R~/15)~4:--IO(N 2)h (3.11) 
Izl < Bn 

with a positive constant p close to 1. This follows again from (A3). 
Furthermore, one derives 

fl I Re o B41 1/2 zl<sd#(z) e-C3P(R~/15)84":> l + 2 ( l + ~ ' ) L 3 p - - - ~  nj (3.12) 
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for n o large enough, with some small positive e' not depending on n. Hence, 
collecting (3.11) and (3.12) we arrive at the lower bound 

z) I Re a B41-1/2 (3.13 fd#(z)f(O, > l+2( l+e)  L3p-i- 5- 

valid for no large enough, with another small positive constant e > e'. This 
bound shows that the denominator in (3.1) is different from zero. Together 
with the analyticity properties of the function (3.4) we thus have deduced 
the properties (A~) with n replaced by n + t. 

4. I N D U C T I V E  R E P R O D U C T I O N  O F  T H E  L A R G E  F IELD 
A S S U M P T I O N S  

In this section we reproduce for g'(r the properties (A2) indexed by 
n + 1. We obtain an upper bound for (3.1) by deriving an upper bound for 
the numerator and employing the lower bound (3.13) for the denominator. 

Because of symmetry we first observe that it suffices in (3.1) to con- 
sider Re r i>0 and to restrict the z integration to 0 ~<z < o% which will 
always be done in this section. Introducing the shorthand notations 

~1 ~2 1 1 
x = x / -  ~ , y = x / -  ~ , 6 =-i-~ Re 6, g- = ]-~ Im 6 (4.1) 

we obtain, according to the assumptions (A2) and (A3) respectively, 
separate estimates in the case of 

rx+iy+zl>Bn: 

( ~ + z )  g ~ _  <e -~{lm(x+-z)~ Y2[15(x+~z)4+y4]q-D(x+~z)4) (4.2) 

called "large case;" and in the case of 

Ix + iy + zl <~ Bn: 

g (~LL__ z ) < e  6{O(B~)-Re(x+iy+-z)6}+lSlB6~ (4.3) 

called "small case." In (4.3) the order O(B 4) estimates the remaining terms 
occurring in (A3) as well as the effect of replacing a by 6. Moreover we 
used 

6 
Re -~ (x + iy + z) 6 = ff Re(x + iy + z) 6 - ~ Im(x + iy _+ z) 6 

> 8 Re(x + iy • Z) 6 - -  I~[ B 6 
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Depending on the values of ~b and z the two Gibbs factors appearing in 
f(~b, z), (3.2), are bounded by (4.2) or (4.3). For B,+I  < ]~bl < ,~-LB,  the 
pairs "large-large," "small-small," and "large-small" occur, whereas for 
I~[ ,--x/~ B, only the pairs large-large and large-small do. 

Lemma. For I~I>B.+I with ~bl>0, [~b2l<xL 1/2Bn+l, and 
0 ~< z < oo the function f (~b, z) satisfies the bound 

If(~b, z)l ~< e E 

E= 6L3{p(x, 1 4 y)--~2B.+ I z2} 

P(x, y) = �89 6 - y2(15x4 + y4) + Dx 4 

(6?4 f2=15  + 

ProoL (c0 The case "large-large." From (4.2) we obtain 

If(~b, z)l <~exp[-6L3{p(x, y) + ~ + positive terms}] (4.4) 

~ ' = ~ z 2 E x  4 -  12x2y2]+l-~-~z4[x2-2y2]+~z 6 (4.5) 

This particular choice of ~f will appear in the other cases too. 
From the inequality x 4 -  12x2y2>~-36y 4, valid for real x, y, we 

deduce for 1(~21 <~ ~cL 1/2Bn+ 1 

x4--12x2yZ>/--64 ( f f - ~ )  4 (4.6) 

Moreover 

1 B]+I (4.7) x2-2y2= Z [1@12-- 3@22]/> - ~  

From (4.7) together with the inequality 

- Ar 2 + ~ r 3 >~ -A2r, VA, r e  ~+ (4.8) 

we get 

l"~52 z4[x2-2YZ]+~z6>~ 15BZ+lz4+ 

(15B2+ 1'] 2 Z 2 
> / -  \--EZ---/ (4.9) 
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From (4.6) and (4.9) then follows the lower bound for ~ ,  (4.5), valid for 
any real z 

~ ' > - -  z2B4 + 1 ~--~ + ~s (4.10) 

Hence from (4.4) and (4.10) follows the bound in this case. 

(fl) The case "large-small." From (4.2) for + z  and (4.3) for - z  we 
obtain, discarding some positive terms 

,f(~,z),<~expI-#L3{P(x, y)--fxD 4 @ ~ (X__ Z) 6 -t-~Z 1 6  

10(B4 ) l , ~ , B 6 } I  (4.11) 
- S T  

Applying 

(X--Z)6-}- Z6~ 2 (2) 6 (4.12) 

valid for x, z~ ~, we can write (4.11) as 

Dx4 +~ If(~b,z)l~<exp - # L  3 P(x ,y)+~-~ 

10(B4) 1 161B6}] (4.13) 
2 - 2 T  

Since x>~(3s  1 we have for sufficiently large no, due to 
128(3L) 3 Ig-I < 

reducing this case to the case (c~) already treated. 

(7) The case "small small." The bounds (4.3) lead to, after discarding 
some positive terms 

If(~b,z)[ ~<exp - ~ L  3 P(x, y)+~-~-Dx4+-~ - -~  

Again, for sufficiently large no, 

1 6 4 ] a t  -Dx4 +-~ x -O(B,)--~ B 6 > 0  (4.16) 

reducing this case also to the case (e). Thus the Lemma is proven. | 
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From this lemma follows directly the upper bound 

f~  d14z) I f (A z)l < e -~{(1/2)~-~(15~ +~4)+ D~4} 

�9 (1 -- 6L30B4+ 1)-1/2e ~(L- 1)D~b~ (4.17) 

We assumed again a sufficiently large no such that the argument of the 
square root is positive. A suitable lower bound for the denominator in (3.1) 
has already been derived in (3.13). It leads, together with (4.17), to the 
upper bound for the Gibbs factor (3.1) 

I g'(~b)l < e ~ { ( 1 / 2 3 ~ -  ~b~(15~b~ + #~)+ D~b~} 

1 +26L3pB4(1 +e) ] l / 2e_e (  L l)D,k~ 
�9 17  ~ 2--[~ ] (4.18) 

In replacing a by 6 we slightly changed the constant 5. For simplicity 
we assume, guaranteed by a sufficiently large no, #L3f2B 4 + ~ < 1/2; then 

1 + 2ffL3pB4(1 + 1/2 
�9 e ~(r l)D,;b 4 < caL3pB4n(I+e,)+(.~/2)OL3~2B4+t 5(L--1)D~b~ 

(4.19) 

Denoting by 6' the quantity 6 indexed by n + 1 we anticipate from 
(5.39) 

0 < R e S - R e 6 ' = O ( N  2 ) = R e 6 0 ( N  1), N=n+no (4.20) 

Recalling the definition (4.1) of 6, we observe, that in order to replace 
m the positive term 6~bz(15q54 + r appearing in (4.18) Re 6 by the weaker 
Re 6', we have to subtract, due to (4.20), a term of the order Re 6BZN-IO 4 
which can easily be accounted for by the term proportional to ( L - 1 ) D .  
Moreover, from (4.19) and p(1 + 5) < 2 we deduce that the choice 

D = 9 L  3 2 +  s L - 1  

finally implies in (4.18) 

J g'(~b) I < e -(~/ls3 ~e a'((1/2)~-- ~15~I + ~4)+ Dot; (4.22) 

Thus the properties (A2) are reproduced with the index n + 1 in place of n. 
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5. I N D U C T I V E  R E P R O D U C T I O N  OF THE S M A L L  FIELD 
A S S U M P T I O N S  

5.1. The Effect ive Potential  

In dealing with the small field region ~b�9 I~bl~<B~+~ we closely 
follow Ref. 5, adapting their method to our more involved situation. Let 
be a fixed positive real number 0 < ~ < 1/4. On the right hand side of (3.1) 
the contributions from Izl ~<~Bn and Izl >~B.  are treated separately. 
Denoting by Z(z) the characteristic function of the interval Izl ~ ~B~ we 
write (s) 

g'(~b) = g'l(~b)[1 + gi(~b)] (5.1) 

d~(z) Z(z) f(~b, z) 
g'l(~b) (5.2) 

dl~(Z) )~(z) f(O, z) 
and 

g,2(~)_~dl~(Z)[1 -Z(z) ] f (q~ ,  z) (~b=O) (5.3) 
gi((b) ~ dll(z) f(O, z) 

We first treat the large z contributions g~. Due to [~bl ~< Bn+1 < xBn 
the variables of both Gibbs factors appearing in f(~b, z) have imaginary 
parts not greater than tcL-1/2Bn in absolute value. In Section 3 we already 
deduced that there f(~b, z) is holomorphic in ~b, P0, 2o, with z fixed, and 
satisfies the uniform bound 

If(~b, z)] < M, Vz �9 N, (Po, 20) �9 ~ ,  (5.4) 

with M independent of n. Hence 

f d#(z)[1 -Z(z)]f(O, z) <MIz  r d~(z)< x ~  M c -(1/2~Bn)2 (5.5) 

Since, as will turn out in the sequel of this section, g'l(O) is 
holomorphic in (~b, P0, 2o) for ]~b[ <~cBn and bounded from below by a 
positive constant independent of n, and moreover ~ d#(z)f(O, z) satisfies 
the lower bound (3.13) we conclude that g;(~b) is holomorphic in 
(~b, P0, 20) for I~l < ~cBn, (Po, 20) e int  ~n, satisfying 

I gi(~b)] < const e -(1/2 ~8"/2 (5.6) 

Hence, for no large enough, ln(1 + g~) is holomorphic in this domain 
too, bounded uniformly by 

[ln(1 + g;(~b)) I </(2 e (1/2 ~Bn) 2 (5.7) 

with the constant /(2 not depending on n. 
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The dominant contributions in the small field region emerge from the 
small z integral g'l, (5.2), which can be treated by a convergent power 
series expansion. Choosing the larger domain 

one observes, that because of the restricted z integration in (5.2), the 
variables in the Gibbs factors entering f(~b, z) are for all ~b from (5.8) boun- 
ded by [L-~/2~+_zl<<.B,. Hence the assumptions (A3) can be used to 
evaluate g'~ 

g' l(q~)=e (P/2)L2~2 (A/6)LO4--(cr/15)(b6 (~/28L)~8'h(~b) (5.9) 

h((~) - ~ d#(z)  )~(z) e -Lk~(z) ~(n+ ~(~,zn 
y d~(z) Z(z) e L~(z) (5.10) 

with the definitions 

V(~b, z) = �89 {15(L-~/2(b + z) + O(L ~/2~b - z)} (5.11) 

= ,~L2q~2z 2 q- o-(L~4z 2 Jr- L2~2z 4) --}- -c(~6z 2 q- 5LO4z4 q- L2q~2z 6) (5.12) 

We first observe that h(~b) is holomorphic in (~b, Po, 20) for ~b in the 
domain (5.8) and (Po, 2o)e~n.  This is a consequence of the analyticity 
properties of both integrands due to (A3) and the finite integration interval, 
together with the fact that the denominator is 1 + O ( N  -~) and thus dif- 
ferent from zero. This estimate is deduced from (3.9), replacing B n there by 
~Bn.  

It is convenient to introduce the ~b-dependent complex measure 

d#(z)  Z(z) e L3[v(z)-v(z)+ V(~,z)] ~(Z)  

< ~ > ~ = ~ d#(z) Z(z) e -L3~(z) (5.13) 

We decompose h(~b), (5.10), as follows 

h(~) = ha((~) + h~(~) 

ho(0) = <1 _ ~ + �89 

hb(~b) = (e  r  1 + r189162  

(5.14) 

(5.15) 

(5.16) 

Using for ff ~ C, I~1 < 3 the inequality 

le -~ 1+  - ~  <[~1 _ ~ 1~2 3 (5.17) 
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to estimate (5.16), possible for no sufficiently large, and the uniform bound 
for g and hence for ~" due to (A3), yields for ~b in the domain (5.8) and 
(Po, 2o)e ~ ,  the uniform bound 

e 2L3aN-2 ~ d#(z) Z(z) e -  L3 Re ~(~) 1~13 
/h~(~)l < 

I~ d~(z) Z(z) e c3~(z)] 

< KbB~2N -3 (5.18) 

with the constant Kb independent of n. We introduced the shorthand 

N = n + n o  (5.19) 

and estimated the denominator as in (3.7) (3.10). Finally h, follows from 
(5.15) and (5.12) as 

ho((~) = <1 >~ - L~(~{;o<z~ >~ + ~<? >~ + ~<z ~ >~} 

2 1 5 --Lq~ 4{6(_7 5,--~L3).z<z4>O+Sz'<z'45, 

1 L30-2(z8 >~ - L32o<z6>(~ 4- O(N-3)} 
2 

1 
+5 L~08{~<?>~ + O(N-3)} 

+ ~b~~ -3) + ~b'zO(N -4) (5.20) 

The order estimates are valid uniformly in ~b, Po, 20. This follows from 
the estimate of the "expectations" (z2~>+, (5.13); using the estimate 
1 + O(N ~) for the denominator and writing 

f d#(z) Z(z) z 2k e -L3[~(~- ~(~> + w(~'~)] 

= @ ( z )  z 2 ~ -  @ ( ~ )  z ~ 
zl  > d__Bn 

I @(z)z2~{ e L3Ev~v~ ~(z)+P~,z~_l} 
4- zl <4B~ 

we deduce from (A3)  , uniformly in ~b, (5.8), and Po, 20 

(5.21) 

( z  2k >~ = (2k - 1)!! + O(N -I) + O ( N -  2) (5.22) 
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where O(N 1) does not depend on ~b. Moreover we write 

( 1 ) ~ =  1 +A(~b) (5.23) 

A((~) - S cl~(z) Z(z) e L3v(z){t2L3[f'(z)-- ,P(~b,z)] __ 1 } (5.24) 

d#(z) Z(z) e L3~(z) 

In order to obtain an optimal bound we decompose 

A( fb)=AI  + A 2 (5.25) 

ZI 1 __ S d~(z) Z(z)e-L3v(z){e L3~(z)- 1} (5.26) 

d~(z) ~(Z) C -L3v(z) 

Z[2 - y  dlA(Z) )~(Z)e L3v(z){e--L3p(4'z)-- l } eL3O(z) (5 .27)  

In order to estimate (5.26) we first observe that 

f(z)  = z lo w(z) (5.28) 

with w(z) holomorphic in kzL < B~. From the maximum modulus theorem 
we obtain ( )1o 

I~(z)l < aN 2 (5.29) 

which we use to bound (5.26). In (5.27) we can use in the domain con- 
sidered [ V(~b, z)[ < aN -2 and thus obtain for no large enough the uniform 
bound 

[A(q~)l < - ~ -  1 +~6,1o (1 +e~j) (5.30) 

where e~ is a small positive number of order N -2 and c > 0 a constant. 
From the bounds (5.18), (5.20), (5.22), (5.30) we conclude that for no 

large enough the function h(~b) is holomorphic in (~b, P0, 2o) with ~b in the 
domain (5.8) and (P0, 2o)E@,, and satisfies Ih(~b)- 1[ < 1 there. Hence 
in h(~b) is holomorphic in the same domain. Choosing c~< 1/12 in the 
assumption (A3) we get 

1 
l n h ( ~ ) ) = h . ( ~ ) ) - l - ~ ( h a ( ~ ) - l ) 2 + O ( N  -3+12:') (5.31) 

in 
The holomorphic function In h(~b) has the power series representation 

Pl  2 21 4 O ' l d 6  "I71 ]~8 
-lnh(~b)=-~-~b +~-~b + 1 5 -  + ~  +~l(~b) (5.32) 
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where 51 is the sum of the even powers in q~ higher than eight. Moreover 
p~, 2~, (r~, ~1 as well as ~ are holomorphic functions of (Po, 2 o ) e ~ , .  
Using the Cauchy formula for derivatives we obtain from (5.31) and (5.20) 

2=La{2+3a+O(N 2)} 

.~1 = L{~ + O(N-2)}  
6 

Gl=L3{--2)~G--1262+~ - S q - O ( N - 2 . 6 ~ ) } 1 5  

"el __ .L20-2+O(N -2 -8~)  
28 

(5.33) 

Furthermore (5.30) and the Cauchy formula for derivatives imply for 
the power series ~1 of (5.32) a uniform bound in the restricted domain 
14,1 ~<B.+I, (Po, ;oo) ~ ~ .  

1 +e'~ ( B . + I / B , , )  1~ a 
151(@)I<~(1_~.)lOLZl_[B,+j(l_~),~-s 2 (5.34) 

where ~3 > 0 is a small constant, and n o large enough. We observe that this 
bound is smaller than a(N+ 1) .2 even with L =  2 if ~ is chosen sufficiently 
small and no sufficiently large. 

Collecting pieces, we finally infer from (5.1), (5.7), (5.9), and (5.32) 
that In g'(~b) is holomorphic in (~b, po,)~o) in the domain I~l~Bn+~,  
(Po,)~o) ~ int @,, 

' )J o-'~6 r' s ~, (5.35) 

with 5' being the sum of the even powers higher than eight. In addition, 
with (5.33),  

p'= L2p + pl 

)o'=L2+21 

a'=a+al (5.36) 

~;'= L-It + Zl 
~'(r = ~,(r + O(e (,/2 ~B~ 
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In writing the equations for p', .... r', which are holomorphic in (P0, 20) 
int ~n, we suppressed the exponentially small orders. What remains to be 
proven in reproducing the assumptions (A3) with index n +  1 are the 
bounds on the coupling constants p', 2', a', ~'. 

5.2. The Flow of the Coupling Constants 

The recursion relations (5.36) determine the flow of the couplings pn, 
~-n, an, % up to corrections. Assuming convergence to zero we obtain from 
(5.36) the asymptotic behavior 

L - 1  1 
a,~ 240 L 3 N 

L 2 

p ~ 6  ( L -  1) ~ a ~  
(5.37) 

L 
Z ~  - 6  ~ - i -  a n 

L 3 
% ~  - 2 8 - - 0 2  

L - 1  n 

for n ~ oo, N =  n + no, no large. This is in accordance with the bounds 
assumed in (A3). 

Due to the higher order corrections in (5.36) we have to control the 
iteration of the couplings using intervals or complex neighborhoods around 
the asymptotic values (5.37). 

This proves to be feasible only after decoupling at least the equation of 
the marginal variable from the other ones to second order, using a non- 
linear transformation to a variable 6. We simplify (5.36) further by 
"diagonalizing" the other recursion relations to leading order. Thus we 
define 

f i n = p n + 2  2n+6  ~ ~n 

L 
i,, = 2, + 6 ~ - ] -  a ,  

~ - - 1  L3 ^ 6 n = a n +  15 in + 30 ~-L-]-i 2n an 

(5.38) 

L 3 
2 g,, = zn + 28 ~-L--~_ 1 a~ 
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and infer from (5.36) and the bounds on p.,  2., or., % in (A3) 

~n+l=L2~n+O(N 2) 

I,,+1 = L i . +  O(U -2) 

240L 3d]+O(N 2 6~) 
d~ + 1 = d. L - 1 

(5.39) 

1 
_ _ ~  +0(N-2-8~)  

"r.+ l - L  % 

The coefficients ft., 2. are connected with normal ordering. Defining 

:F(~b): = e (~/2~(L/L- ~)(d/d~)2 F(~b) (5.40) 

we observe that the effective potential has the form 

vn(~b)=~- +~ .~b  .+~-~ +~-~ +~n(~b)+const (5.41) 

We analyze the recursion relations (5.39), considering initial values 
% = 0  or of order no a, cro~R+, (/90, ~ .o )~oCC 2, with cr o, tPol, 12ol of 
order no 1. ~0 is specified below. It is almost trivial to see that these initial 
Gibbs factors satisfy our inductive assumptions if no is sufficiently large. 

From (5.39) we conclude that for fixed R~ e JR+, chosen large enough 
to inc][ude r0--0, and n o large enough 

1~t <R~N-2~ ]i.+1] < R ~ ( N +  1) -2 (5.42) 

In order to treat the marginally stable ~ we define for n ~ 

L - 1  1 +sn 
6 n -  240 L ~  T '  s,,eC (5.43) 

and assume, for fixed Roe ~ + 

Isnl < R~ (5.44) 

We choose 
1 

Re < 128(3L)3 + 1 (5.45) 

in order to satisfy 128(3L) 3 lira 61 < Re 6 required in (A3). From (5.39) we 
obtain for 6n+1 

s ~ + , = s n [ 1  l+SnN t-O(N l--6~)J (5.46) 
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and thus conclude, for no sufficiently large 

(5.47) 

We are left with the task to find critical values Po = P*, 20 = 2* for the 
relevant couplings of the initial Gibbs factor (1.3), such that [p~], [2,1 stay 
bounded of order N - l =  (n + no) -1 for all n. For this purpose we exploit 
analyticity of g(n/(~b) in (Po, 2o) ~ ~ ~ C 2, with successively restricted com- 
pact domains ~ c i n t  ~ _ 1 .  In Section 3 we have already proven that 
holomorphy of g(~)(~b) in (20, po)~ ~ implies holomorphy of g(n+l)(~b) in 
(Po, 2o)e int ~ .  Our analysis is simplified introducing (fi~, ~n), (5.38). Due 
to this linear transformation the Gibbs factors obviously inherit for (rio, [o) 
holomorphy properties from those in (Po, 2o) with domains ~ ,  and N~, 
respectively. Thus from (5.35) we deduce, that we have holomorphic map- 
pings, n s 

H~: i n t ~  1-~C2 
(5.48) 

io)  

In order to specify the domains ~ ,  we introduce the families of 
polydisks, with a constant R > 0 

~n = {(pn,~n)eC2:jpn[ <RN 1 Iinl <RN 1} (5.49) 

2 ={(r162 1/2RN 1 , [ i . ]<  L 1/2RN 1} (5.50) 

the norm, (Zl, z2) 6 C 2 

II(zl,  z2)ll I = IZll-]-Iz2l  (5.51)  

and define the diameter of a domain N ~ C 2 as 

diam N = sup I1~- C/1l 
C,C' E.~ 

We then choose 

i.e., the closure of-~o, and prove inductively. 

(A~) 
tions 

implying 

(5.52) 

(5.53) 

The holomorphic maps Hn, (5.48), n e N, have bijective restric- 

with ( L -  2e) > 1 independent of n. 

diam ~ ~ 4 R ( L - -  2~) n N i 



Infrared Asymptotic Freedom of a Hierarchical 03 s Lattice Theory 141 

Proof. We prove (A;) for n +  1 assuming it to be true for n. We 
observe (9) that H .  l is holomorphic too and define the holomorphic map 

h.+~=H,,+loH21: ~ --+ C 2 

(/5, i.)~-+ (fi~+ i, i .+~)  (5.54) 

where for n = 0 we have to put H 0 = id. 
From (5.39) we obtain for h~+~ the system 

/3.+~ = L2/3~ + g.(/5., 2.) 
(5.55) 

2.+,  = L i .  + G.(/3., 2.) 

with holomorphic functions F. ,  G. bounded on the domain considered by 
O(N-2). Let (/3.,~-n), ( y . , i ' n )E~ . ,  (5.50). Using the Cauchy integral 
representation for F.  and Gn with integrations performed on the dis- 
tinguished boundary ~n of a polydisk N'., with radii R' smaller but close to 
R, i.e. 

% =  {(z, w)e c2: Izl = twl =R'N -1 } (5.56) 

yields 

F.(/5., i ~ ) -  F.(/3", i'.) 

=(2~i)_2f%dzf dwF.(z,w){ i 1 1 } 
z - / 3 . ) ( w  - 2 . )  ( z  - y . ) ( w  - 2 . )  

=(2=i) 2 dz f dwF.(z,w) 

. , } 
, t , - &  (5.57) 

and a similar equation in the case of G.. Since all the differences occurring 
in the denominators of (5.57) have the common lower bound 
( 1 - L - m ) R N  ~ and because F. and G. are of the order N 2 we easily 
deduce 

IF.(/5~, i . ) - F . ( y ,  2'.)1 ~< e. [1(/3.-~'o, I . -  I'.)11, (5.58) 

with e. = O(N -~) < e, e > 0 a small constant, and the identical bound for 
the case of G.. From (5.55) and (5.58) we finally infer for (/5., i . ) ,  
(/3", I ;)  e & 

IP(/5. +, -/3'n + 1, In + ~ - 1'~ + ,)ll ~ > ( L -  2e) H(/3~- ~;,, 1~ - 2'.)I1, (5.59) 

Hence h.+~10a, is injective. Moreover, (5.59) shows that h~+~l~, is 
expansive with an expansion parameter bounded below by ( L - 2 e ) >  1. 
From (5.55) and the bounds on F~, G,, it is obvious that h.+~(~.~)=~n+~, 
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for n o large. This implies that the restriction of Hn+l to ~ n + l c i n t  ~,  
exists, with 

Hn+ll~n+l" ~ n  + 1 --~ ~ n  + 1 (5.60) 

bijective and holomorphic. The lower bound on the expansion factor 
implies the claim for the diameter. | 

From (A;) we infer the existence of a unique critical point 

{(fi0,10),it}= {(p*,,~*)}= (~ ~,  (5.61) 
n=0 

which is a real pair, since the mappings H,  are real analytic for all n. It is 
now obvious that because of (5.38), (5.42), (5.47), and (5.60) we proved 
inductively bounds on p,, 2~, ~r,, % as stated in (A3), valid under the suc- 
cessive restrictions ~o=@~z~2 --. on (po, 2o) and thus valid for the 
critical point (5.61) for all n. 

For the unique real-analytic critical Gibbs factor gl~ found by 
(5.61) within a family (1.3) for ao small enough, we thus proved con- 
vergence of the iterates g(~)(~), (1.i), uniformly on compacts K c C  

g(")(~b) , 1 (5.62) 
n ~  o:3 

where the domain of holomorphy of g(n)(~) includes K eventually for all n. 
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